This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 813497.
Conclusions and Future Work

Integrating PLASMA in the Solid Ecosystem through the Usage of Ontology Design Patterns

Conformance and Legal Compliance

Motivation & Challenges to the Solid Vision

Background & Related Work

• Machine-readable Policies and Auditing Metadata in Solid
• Alignment of Solid with Data Protection Requirements

PLASMA: A Metadata Language for Solid

• Entities
• Infrastructure
• Pod-related Data
• Policies

Using Patterns to Manage Governance of Solid Apps

Beatriz Esteves1*, Harshvardhan J. Pandit2

1Ontology Engineering Group, Universidad Politécnica de Madrid, Spain
2ADAPT Centre, Dublin City University, Ireland

Abstract

Currently, the Solid Protocol and its specifications lack the necessary vocabulary and processes for ensuring transparency and accountability in the use of data. In particular, to deal with the obligations and requirements required by regulations related to personal data protection and privacy. In addition, the lack of a guiding vocabulary leads to no common mechanism through which apps can request data and how Solid maintains information about its use. To address these, we propose PLASMA – a policy language to describe the entities, infrastructure, legal roles, policies, notices, and records to understand and establish responsibilities and accountability within the Solid ecosystem. We present how ontology design patterns using PLASMA can provide a common interface to create structured policies, records, and logs within the diverse Solid use cases, and thereby solve challenges regarding the management and governance of apps and their privacy considerations.

Keywords

Solid, access control, policies, GDPR, regulatory compliance, ontology design patterns

TABLE OF CONTENTS

1. Introduction
2. Vocabulary
2.1 Base concepts
2.2 Entities
2.3 Policies
2.3.1 Agreements
2.4 Notices
2.5 Services
2.6 Data
3. Using Policies
3.1 User Preferences
3.2 User Requirements
3.3 User Options
3.4 Data Request
3.5 Consent Agreement
3.6 Contract Agreement
4. Conformance
4.1 Policy Conformance
4.2 App Conformance
4.3 Service Conformance
4.4 User Conformance
4.5 Agent Conformance

PLASMA

Policy Language for Solid's Metadata-based Access Control

Unofficial Draft 29 September 2023

• More details about this document

Latest published version

https://github.com/beatrizestevessld/plasma

Latest editor's draft

https://github.com/beatrizestevessld/plasma

History

Current history

Editor(s)

Beatriz Esteves (CES, Universidad Politécnica de Madrid)
Harshvardhan J. Pandit (ADAPT Centre, Dublin City University)

Copyright © 2023 the document author(s). Use is allowed under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, additional terms may apply.

Abstract

Currently, the Solid protocol and its specifications lack the terms to express metadata-related to the entities, roles, processes or infrastructure necessary to provide transparency to its data handling practices. In particular,
Solid is a specification for decentralised data stores based on interoperable data formats and protocols.
Solid is a specification for decentralised data stores based on interoperable data formats and protocols.

https://doi.org/10.1145/3378061
Challenges to the Solid Vision

“PIMS provide features for individuals to be able to access their personal data, as well as to rectify or erase them, as provided for by the GDPR, either because the data are in repositories under their direct control or because all shared data are linked to a source, which is again in the control of the individual.”

EDPS TechDispatch #3/2020 – PIMS [Source]
Challenges to the Solid Vision

“PIMS provide features for individuals to be able to access their personal data, as well as to rectify or erase them, as provided for by the GDPR, either because the data are in repositories under their direct control or because all shared data are linked to a source, which is again in the control of the individual.”

EDPS TechDispatch #3/2020 – PIMS [Source]

What is missing from Solid?

No records of agreements for the provision of services
Lack of tools to give / withdraw consent
No metadata about Solid infrastructure
No information on the identity and contacts of Solid providers
Lack of tools to get available categories of data
Record keeping and log maintenance are nonexistent
Lack of tools to rectify data inaccuracies
Difficulty for users to set (granular) access to resources
Access grants valid in perpetuity
Data requests miss a purpose
Compatibility of purposes cannot be checked
Consent dialogue not enough for informed decision
Access grants not sufficient to be a valid record of consent

Using Patterns to Manage Governance of Solid Apps | Beatriz Esteves | WOP2023 @ ISWC2023 | CC BY 4.0 | beatriz.gesteves@upm.es
Research Objectives

RO1. Creating a taxonomy of Solid’s entities and infrastructure to describe the actors and processes involved in the Solid ecosystem;

RO2. Providing a metadata policy language (PLASMA), using the terms identified in RO1, to express information regarding legal roles and other compliance requirements in a jurisdiction-agnostic manner (while satisfying requirements from GDPR);

RO3. Using PLASMA for defining a set of Solid-related ODPs regarding users and apps policies, data use logs, and registries to provide easy access to data in Pods.
Solid’s authorisation mechanism currently relies on two access control languages – WAC and ACP

WAC – Web Access Control

```
<acl:Authorization ;
  acl:agent <https://beatriz.providerZ.com/profile/card#me> ;
  acl:accessTo <https://arya.providerY.com/docs/file1.ttl> ;
  acl:mode acl:Read, acl:Write .
```

ACP – Access Control Policy

```
<acp:AccessGrant ;
  acp:grant acl:Read, acl:Write ;
  acp:context [ ]
    acl:agent <https://beatriz.providerZ.com/profile/card#me> ;
    acp:issuer <https://identityProviderZ.com> ;
    acp:target <https://victor.providerY.com/docs/file1.ttl> ;
    acp:client <https://clientApplicationA.com>
  ].
```

https://w3id.org/oac
Related Work – Alignment of Solid with Data Protection Requirements

<table>
<thead>
<tr>
<th>GDPR Articles</th>
<th>Obligations</th>
<th>Controller</th>
<th>Processor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Art 5</td>
<td>Comply with fundamental data protection principles</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Art 13 & 14</td>
<td>Comply with information obligations and data subjects’ requests to exercise their rights</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Art 15 – 22</td>
<td>Implement data protection by design and by default</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Art 30</td>
<td>Keep records of processing activities</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Art 32</td>
<td>Implement appropriate technical and organisational measures</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Art 33, 34</td>
<td>Comply with the personal data breach notification obligations</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

PLASMA aims to provide a set of taxonomies to express Solid-related use-cases in terms of:

- **What?** i.e. the data in question
- **Who?** i.e. who's data and who is requesting/using/providing it
- **Where?** i.e. where the data is coming from, where it will be stored and where is it going
- **Why?** i.e. for what purpose is the data being requested/used/shared?
- **When?** i.e. over what temporal duration is the data being requested/used/shared?
- **How?** i.e. how is this being done, by what means and technologies

```xml
<!DOCTYPE xml PUBLIC "-//W3C//DTD semi-XML IRI//EN" "http://www.w3.org/IRI/iri-xml.dtd">
<plasma:DataRequest a:plasma:DataRequest, odr:Request ;
    odr:profile eac : ;
    odr:uid <https://example.com/DataRequest> ;
    dcterms:description "Request to erase temporary data from the Pod."
    dcterms:creator <https://example.com/ServicDeveloper_Entry> ;
    odr:permission [ odr:assignee <https://example.com/ServicDeveloper_Entry> ;
    odr:action eac:Erase ;
    odr:target plasma:AppPersistentData, plasma:ServiceTemporaryData ;
    odr:constraint [
        dcterms:title "Purpose for access is to clean temporary data that is no longer needed." ;
        odr:operator odr:Eq ;
        odr:rightOperand eac:Purpose ;
    ] .
] .
```

https://w3id.org/plasma

Using Patterns to Manage Governance of Solid Apps | Beatriz Esteves | WOP2023 @ ISWC2023 | CC BY 4.0 | beatriz.gesteves@upm.es
PLASMA – Entities & Infrastructure

Using Patterns to Manage Governance of Solid Apps | Beatriz Esteves | WOP2023 @ ISWC2023 | CC BY 4.0 | beatriz.gesteves@upm.es
Integrating PLASMA in the Solid Ecosystem through the Usage of ODPs

Using Patterns to Manage Governance of Solid Apps

(CQP1.) What is the unique identifier of the policy?
(CQP2.) Who is the creator of the policy?
(CQP3.) When was the policy issued?
(CQP4.) Who is the assignee of the policy?
(CQP5.) What application/service is being used to access the data?
(CQP6.) What access mode is being requested?
(CQP7.) What personal data is being accessed?
(CQP8.) What is the purpose for accessing the data?
(CQL1.) What type of action, e.g., create, update, erase, is being performed on the data?
(CQL2.) Who is the entity interacting with the data?
(CQL3.) Who is the entity publishing the log?
(CQL4.) When was the log issued?
(CQL5.) Where is the data being stored?
(CQL6.) What application/service is being used to generate the data, if any?

Using Patterns to Manage Governance of Solid Apps | Beatriz Esteves | WOP2023 @ ISWC2023 | CC BY 4.0 | beatriz.gesteves@upm.es
Integrating PLASMA in the Solid Ecosystem through the Usage of ODPs

(CQL1.) What type of action, e.g., create, update, erase, is being performed on the data?
(CQL2.) Who is the entity interacting with the data?
(CQL3.) Who is the entity publishing the log?
(CQL4.) When was the log issued?
(CQL5.) Where is the data being stored?
(CQL6.) What application/service is being used to generate the data, if any?

(CQR1.) Who is maintaining the registry?
(CQR2.) When was the registry created/updated?
(CQR3.) What types of data are available?
(CQR4.) Where is a specific type of data being stored?
(CQR5.) What policy is associated with the data?
W3C Community Group Report to express “machine-readable metadata about the use and processing of personal data based on legislative requirements such as the GDPR”

https://w3id.org/dpv

- **DPV-GDPR** to model legal basis, rights and data transfer tools defined in the GDPR
- Extensions for new data-related regulations are being added (**DPV-DGA**)
- Guidance for the implementation of **ISO/IEC 29184 (Privacy Notices)** and **ISO/IEC 27560 (Consent Records)** using DPV concepts to be provided soon by DPVCG
- Contract-related terms from the **smashHit project** to be integrated soon into DPV
Conclusions

- Record policies used to authorise access.
- Keep information about the developers and/or providers of Pods, apps, services, data, identity, infrastructure, …
- Keep activity logs regarding important Solid processes, e.g., updating a resource, moving to a different Pod provider, or deleting a given access authorization from the Pod.
- Maintain registries (of policies, users, apps, data, …) for convenient access to data and metadata within a Pod.

The usage of ODPs will ensure that the appropriate information based on legal requirements, e.g., from GDPR's Article 13/14, is present in the Pods to be consulted. As such, the creation of patterns for the different types of policies, notices, logs, and registries is of the utmost importance.
i. Evaluate the coverage of PLASMA to deal with a variety of different workflows.

ii. Integrate the usage of PLASMA, and of ODRL and DPV as well, into the design of Solid servers, applications, and services.

iii. Develop SHACL shapes to check for compliance with the PLASMA specification, including the usage of DPV to comply with legal requirements, e.g., in GDPR.

iv. Support new data-related regulations (Data Governance Act, Data Act, Health Data Spaces, …) requirements.
Protect

Using Patterns to Manage Governance of Solid Apps

Beatriz Esteves, Harshvardhan J. Pandit
beatriz.gesteves@upm.es | besteves4@eupolicy.social

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 813497.